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Abstract—This paper introduces necessary and sufficient con-
ditions that surrogate functions must satisfy to properly define
frontiers of non-dominated solutions in multi-objective opti-
mization problems. These new conditions work directly on the
objective space, thus being agnostic about how the solutions are
evaluated. Therefore, real objectives or user-designed objectives’
surrogates are allowed, opening the possibility of linking indepen-
dent objective surrogates. To illustrate the practical consequences
of adopting the proposed conditions, we use Gaussian processes
as surrogates endowed with monotonicity soft constraints and
with an adjustable degree of flexibility, and compare them to
regular Gaussian processes and to a frontier surrogate method
in the literature that is the closest to the method proposed
in this paper. Results show that the necessary and sufficient
conditions proposed here are finely managed by the constrained
Gaussian process, guiding to high-quality surrogates capable of
suitably synthesizing an approximation to the Pareto frontier
in challenging instances of multi-objective optimization, while
an existing approach that does not take the theory proposed
in consideration defines surrogates which greatly violate the
conditions to describe a valid frontier.

Index Terms—Gaussian processes; Necessary and sufficient
conditions; Non-dominated frontier; Surrogate functions.

I. INTRODUCTION

M
ULTI-OBJECTIVE optimization (MOO), also called

multiple criteria optimization [1], is an extension of the

standard single-objective optimization, where the objectives

may be conflicting with each other [2], [3]. When a conflict

exists, we are no more looking for a single optimal solution

but for a set of solutions, each one providing a trade-off on the

objectives and none being better than the others. This solution

set is called the Pareto set and its counterpart in the objective

space is denoted the Pareto frontier.

The Pareto frontier is at the core of MOO algorithms, being

the foundation of many methods devoted to evaluating the

performance and comparing the solutions to each other [4].

However, the frontier is defined by the objectives, which can

be expensive to compute [5], [6], [7]. This leads to a variety

of surrogate methods that try to approximate the objectives,

e.g. [8], [9], thus saving computational resources.

Among the surrogates that directly or indirectly estimate

the Pareto frontier, one introduced by Yun et al. [10] is

the closest to the surrogate described in this paper. They

used a one-class support vector machine (SVM) to define a
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function over the objective space whose null space describes

an approximation of the Pareto frontier. This function is used

to select individuals, since its value increases as its argument

becomes more distant from the frontier, which are then used

for crossover in a genetic algorithm.

Loshchilov et al. [11] presented a similar SVM approach,

but the function learnt is defined over the decision space,

which allows direct comparison with the Pareto frontier ap-

proximation without requiring evaluation of the objectives.

This direct comparison can also be achieved with estimates

built over the objective space by integrating surrogates for

the objectives. However, contrary to the one-class SVM that

learns a model to fit all samples on one side of the approximate

frontier, the proposed SVM is also able to consider points that

dominate the frontier being approximated, allowing approxi-

mation of multiple Pareto frontiers, each defined by a class of

points in non-dominated sorting [12].

In a different approach, Loshchilov et al. [13] approximated

the Pareto dominance instead of the Pareto frontier by using

a rank-based SVM. In this case, instead of providing only the

data points, the algorithm is also informed about the preference

for an arbitrary number of sample pairs and tries to find a

function where higher evaluation represents higher preference.

Using the Pareto dominance to establish the preference be-

tween points and learning directly from the decision space,

candidate solutions can be compared in dominance using the

learnt function. However, both [11] and [13] try to estimate the

Pareto frontier using generic function approximation models,

which do not take into account the particularities of the Pareto

frontier.

It is possible to guarantee that the Pareto frontier’s estimate

is valid by building conservative estimates. For instance, using

a binary random field over the objective space to model

the boundary between dominated and non-dominated regions,

Da Fonseca and Fonseca [14] described a theory that can

be used to assess the statistical performance of a stochastic

optimization algorithm and compare different algorithms. The

attainment function described in the paper defines the prob-

ability that a run of the stochastic algorithm will dominate

the function’s arguments. Although the attainment function is

hard to compute, it can be approximated by multiple runs of

the underlying algorithm, which makes it a good candidate for

analyzing the performance statistics of the optimization algo-

rithm and for performing hypothesis testing between MOO

algorithms.

If a single run is considered, then the approximate attain-
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ment function describes a valid estimate of the Pareto frontier

and it is defined as the border of the region dominated by the

points provided. Although valid, this estimate is very conser-

vative and does not interpolate between the points provided,

which means it cannot provide a good idea of the frontier’s

shape and any evaluation of new points could be performed

using only dominance comparison with the provided points.

In this paper, we develop a theory that defines necessary and

sufficient conditions for a functional description of a Pareto

frontier. Based on this theory, the search for approximations

for the Pareto frontier using surrogate functions should be

constrained to, or at least focused on, the ones that satisfy

the results. If not, the resulting manifold obtained from the

function may have any shape, possibly with many dominated

points, which could result in reduced performance of algo-

rithms that use the approximation of the Pareto frontier, either

during the optimization or after it.

Moreover, the theory is developed on the objective space,

allowing either accurate or approximate objective evaluations

to be used, without restricting the format of the objectives’

surrogates. If parametric surrogate objectives are used, their

association with the Pareto frontier surrogate can provide

feedback on how to adjust their parameters so that the ap-

proximation is closer to the real objectives.

As an example of how to integrate the theoretical conditions

in a surrogate design, we show how to introduce the theoretical

conditions as soft constraints in Gaussian processes [15],

which are nonparametric models, thus being able to adjust

to variable number of samples, and whose hyper-parameters

can be easily optimized.

To validate the hypothesis that surrogate methods that do

not consider this theory may define invalid Pareto frontier

approximations, the constrained Gaussian process is compared

to a regular Gaussian process and to an existing SVM-based

surrogate [10] and results show that the soft constrained Gaus-

sian process finds good approximations maximally obeying the

constraints according to the degree of flexibility of the model.

On the other hand, the models that do not take into account

the theory can violate greatly and arbitrarily the conditions for

a valid Pareto frontier.

This paper is organized as follows. Section II presents

previous work on multi-objective evolutionary algorithms

and how they relate to the method proposed in this paper.

Section III introduces the notation and principles of multi-

objective optimization used in this paper. Section IV shows

the conditions that a function must satisfy to define a Pareto

frontier. These conditions are then used in Section V to build

a function to approximate a frontier given some points on it

and the approximation is compared to an existing surrogate.

Finally, Section VI summarizes the findings and points out

future directions for research.

II. GAUSSIAN PROCESSES AS SURROGATES IN

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

In this section, we present relevant previous works that use

Gaussian processes in multi-objective evolutionary algorithms

and discuss how they are related to the novel method presented

in this paper. For an extensive analysis of model-based multi-

objective optimization algorithms, we refer the reader to [16].

Since a Gaussian process can approximate any function

and provide the uncertainty of its prediction [15], it was

used for single-objective optimization in the Efficient Global

Optimization (EGO) procedure [17] to determine the point

with the best expected improvement of the cost function,

which is then evaluated in the real objective.

One early approach that extended this procedure for multi-

objective optimization was the ParEGO algorithm [18], in

which the objectives are transformed into a single cost function

using an augmented Tchebycheff function whose coefficients

are chosen randomly at each step and this new cost func-

tion is approximated by a Gaussian process. Based on this

approximation, an evolutionary algorithm is used to optimize

the expected improvement of the new cost function, providing

the new point to be evaluated in the real system. Further

study [19] showed that ParEGO is robust to noise on the

function evaluations.

Later, a similar approach named MOEA/D-EGO [20] was

proposed. This method also transforms the problem into a

single-objective optimization in order to use the EGO pro-

cedure, but uses a fixed set of parameters for the scalarization

function instead of a random value for the parameters at each

step, like ParEGO, thus creating many scalarizations of the

objectives.

Alternatively, instead of performing a scalarization of the

objectives and then using a Gaussian process to approximate

the new function, one can create a surrogate for each objective

and combine the approximations to create the scalarization.

For instance, [21] and [22] adapt the SMS-EMOA [23], which

is an evolutionary algorithm that selects individuals based on

the hypervolume contribution, to use the expected improve-

ment on the hypervolume instead of the actual hypervolume

contribution as target for the algorithm.

The use of surrogates for each objective may allow better

fitting, as side-information from the objectives may allow

better kernels to be used in the Gaussian process to describe

the function [15]. Furthermore, when the real objectives eval-

uation has noise, the surrogates for the objectives can share

information that might improve the approximation by using

multi-task learning methods [24].

By creating a surrogate for the Pareto frontier using a

Gaussian process like the one proposed in this paper, we are

performing a scalarization of the objectives like ParEGO and

MOEA/D-EGO, but without requiring the additional parame-

ters used to combine the objectives to create the new function.

In our case, we use the values of the objectives directly to

create the surrogate, without first creating a scalar function

and then estimating a surrogate for it. Nonetheless, the EGO

procedure can be used in this surrogate, so evolutionary

algorithms can be used to find the point with higher expected

improvement to be evaluated in the real objectives.

Since this approach is independent from the model of the

objectives themselves, they can be individually approximated

by Gaussian processes, making use of side-information and

multi-task learning methods, and the uncertainty provided by

the surrogates of the objectives can be propagated to the Pareto
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frontier approximation [25], [26]. Moreover, computing the

expected improvement for the hypervolume can be expen-

sive [27], but computing the mean and variance of a prediction

using a surrogate for the Pareto frontier is polynomial on

the number of points and objectives considered, which may

provide a speedup for running the evolutionary algorithm with

many objectives, as many evaluations of the surrogates are

performed.

III. MULTI-OBJECTIVE OPTIMIZATION

A multi-objective optimization (MOO) problem is defined

by a decision space X and a set of objective functions

gi(x) : X → Yi, i ∈ {1, . . . ,M}, where Yi ⊆ R [28]. Since

the framework is the same for maximization or minimization,

we will consider that minimization is desired in all objectives.

For a given point x in the decision space, the point defined

by its evaluation using the objectives y = (g1(x), . . . , gM (x))
is its counterpart in the objective space Y = Y1 × · · · × YM .

Although the objective space usually only makes sense

when coupled with the decision space and objectives, which

allows for its infeasible region and Pareto frontier to be

defined, we will work only with the objective space in this

paper, which means that the results hold for any problem. We

will also consider that Y = RM , since any restriction for a

specific problem is defined by means of the objectives and

decision space constraints, and are handled transparently.

Since we are dealing with an optimization problem, we

must define ordering relations to compare solutions, like the

relations < and ≤ are used in the single-objective case. In

MOO, this ordering relation is the dominance.

Definition 1 (Dominance). Let y and y′ be points in RM ,

the objective space. Then y dominates y′, denoted y � y′, if

yi ≤ y′i for all i.

The definition of dominance used in this paper is the same

provided in [4], which allows a point to dominate itself. This

relation is usually called weak dominance, but we call it

“dominance” for simplicity, since it is the main dominance

relation used in this paper. Another common definition is to

require that yi < y′i for at least one i, and both definitions are

consistent with the theory developed in this paper.

Definition 2 (Strong Dominance). Let y and y′ be points

in RM , the objective space. Then y strongly dominates y′,

denoted y ≺ y′, if yi < y′i for all i.

Once the ordering relation is defined, we can divide the

space Y in three sets: an estimated Pareto frontier, the set of

points strongly dominated by the estimated frontier, and the

set of points not strongly dominated by the estimated frontier.

Definition 3 (Estimated Pareto Frontier). A path-connected set

of points F ⊂ RM is said to be an estimated Pareto frontier if

no point in it strongly dominates another point also in F , that

is, ∀y ∈ F, ∄y′ ∈ F : y′ ≺ y, and every point in the objective

space except for F either strongly dominates or is strongly

dominated by a point in F , that is, ∀y ∈ RM − F, ∃y′ ∈
F : y ≺ y′ ∨ y′ ≺ y.
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Figure 1: Example of the definitions for a particular multi-

objective problem. The estimated strict Pareto frontier Fs is

shown in a solid blue line, the estimated Pareto frontier F

includes the solid and dashed blue lines, the dominated region

D is shown on the top right red area, and the non-dominated

region D is shown on the bottom left green area.

A set S is path-connected if there is a path joining any

two points x and y in S and a path is defined by a continuous

function p : [0, 1] → S with p(0) = x and p(1) = y. Therefore,

if there is a continuous path of points in S that gets from any

x ∈ S to y ∈ S, then S is path-connected. Based on this

definition, an estimated Pareto frontier F divides the objective

space RM in three disjoint sets: points strongly dominated by

points in F , points that strongly dominate points in F , and F

itself.

Definition 4 (Estimated Strict Pareto Frontier). A set of points

Fs ⊂ RM is said to be an estimated strict Pareto frontier if no

point in it dominates another point also in Fs, that is, ∀y ∈
Fs, ∄y′ ∈ Fs, y

′ 6= y : y′ � y, and every point in the objective

space except for Fs either dominates or is dominated by a point

in Fs, that is, ∀y ∈ RM − Fs, ∃y′ ∈ Fs : y � y′ ∨ y′ � y.

Definition 5 (True Pareto Frontier). An estimated strict Pareto

frontier F ∗ is a true Pareto frontier if and only if, for all points

in F ∗, there is no other feasible point in the objective space

that dominates the point in the frontier, that is, ∀y ∈ F ∗, ∄x ∈
X , g(x) 6= y : g(x) � y.

The estimated Pareto frontier of Definition 3 is a gener-

alization and an approximation of the true Pareto frontier

in two ways: i) if the true Pareto frontier is discontinuous,

then dominated points are added so that the estimated Pareto

frontier F is path-connected while also guaranteeing that no

point in it strongly dominates any other; and ii) the estimated

Pareto frontier is simply a set of points that divide the space

into dominated and non-dominated regions, without stating

anything about the optimality of its points.

Consider, for instance, a problem where one of the objec-

tives is given by

g1(x) =

{

x+ 1, x > 1

x, otherwise,
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and the other is given by g2(x) = −x. Then the true Pareto

frontier F ∗ is given by

F ∗ ={(x+ 1,−x) | x ∈ R, x > 1}

∪ {(x,−x) | x ∈ R, x ≤ 1},

which clearly is not path-connected. However, if we add the set

of points F̂ = {(y,−1) | y ∈ (1, 2]} to F ∗, then the resulting

path-connected set F = F ∗ ∪ F̂ satisfies Definition 3, despite

the fact that every point in F̂ is dominated by (1, 1) ∈ F ∗,

but not strongly dominated by it.

Figure 1 shows an estimated strict Pareto frontier Fs, which

coincides with the true Pareto frontier F ∗ in this example,

and the path-connected estimated Pareto frontier F for this

problem. This makes it clear that the estimated Pareto frontier

F can contain the true Pareto frontier F ∗, i.e. F ∗ ⊆ F , while

providing a path-connected 1D manifold that splits the whole

objective space R2. Of course, these properties of the estimated

Pareto frontier are extensible to M > 2 objectives.

With the definition of an estimated Pareto frontier, the

objective space is divided into two sets, named dominated and

non-dominated sets, also shown in Fig. 1.

Definition 6 (Dominated Set). The dominated set D for an

estimated Pareto frontier F is the set of all points in RM

where, for each one of them, there is at least one point in F

that strongly dominates it, that is, D = {y ∈ RM | ∃y′ ∈
F : y′ ≺ y}.

Definition 7 (Non-Dominated Set). The non-dominated set D

for an estimated Pareto frontier F is the set of all points that

are not in F or D, that is, D = {y ∈ RM | ∃y′ ∈ F : y ≺ y′}.

Note that, from the definition of strong dominance, both D

and D are open and unbounded sets, with boundaries defined

by the estimated Pareto frontier F . Furthermore, if F contains

the true Pareto frontier, then the points in D are not achievable

due to the objectives’ definitions.

From the partition of the objective space in three sets,

one estimated Pareto frontier, one dominated and one non-

dominated set, we can define a score function similarly to [11],

[13].

Definition 8 (Score Function). A score function f(y) : RM →
R for a given estimated Pareto frontier F is a function that

satisfies

f(y) = 0, ∀y ∈ F,

f(y) > 0, ∀y ∈ D,

f(y) < 0, ∀y ∈ D.

Therefore, a score function provides a single value that

places its argument in relation to the estimated frontier.

Moreover, for a given estimated Pareto frontier F , there are

many possible choices of score functions f(y) that satisfy the

definition and all of them uniquely define F based on their

solution set f(y) = 0. This allows a score function to work

as a surrogate for the estimated Pareto frontier.

IV. NECESSARY AND SUFFICIENT CONDITIONS FOR

SURROGATE SCORE FUNCTIONS

In this section, we will show how a score function f(y)
can induce an estimated Pareto frontier F and the conditions

it must satisfy so that the set it defines is indeed an estimated

Pareto frontier, that is, no point in it strongly dominates any

other point in it.

The main theory developed is based on the most general

notion of a function f , but the conditions may be hard to

evaluate for a general case. Therefore, we will also provide

corollaries that prove the results for functions with additional

constraints, like continuous derivatives. Since some of these

results depend on Taylor approximations and the first deriva-

tive at the required points may be zero, we must define a

generalized gradient.

Definition 9 (Generalized Gradient). Let h ∈ Ck, where Ck

is the class of functions where the first k derivatives exist and

are continuous, with k ≥ 1. Let k∗(h) be the first non-zero

derivative of h evaluated at 0, that is,

k∗(h) = arg min
1≤i≤k

(

dih

dxi

∣

∣

∣

∣

x=0

6= 0

)

,

where k∗(h) is not defined if h is a constant function or no i

satisfies the inequality. Then

∆(h) =











0, ∃a ∈ R, ∀x : h(x) = a

1

k∗(h)!

dk
∗(h)h

dxk∗(h)

∣

∣

∣

∣

∣

x=0

, otherwise

is the generalized gradient operator, which is undefined if there

is no i that satisfies the inequality.

The role of the generalized gradient in the theory to be

presented is to avoid issues with functions that may have

null derivative at the points being evaluated but that are also

increasing. Consider, for instance, the function f(x) = x3,

whose gradient is null at x = 0. This function is strictly

increasing, but the first-order approximation using Taylor

series is a constant. In order to consider small changes in

the function’s argument, we must use first non-null derivative,

which is the generalized gradient, as it will dominate the

approximation.

The generalized gradient can be used in the Taylor approx-

imation as h(δ) = h(0) + δk
∗(h)∆(h) + O(δk

∗(h)+1), where

0 < δ ≪ 1 and O(·) is the Landau symbol. Since the result is

based on δ being a small value, the exact power k∗(h) used

to compute δk
∗(h) is not important for the approximation and

the term O(δk
∗(h)+1) is dominated by the other factors.

The extensions to continuous functions f rely on the gen-

eralized gradient of a single-parameter continuous function f̂ ,

derived from the original f , having different signs for opposite

directions. However, it does not hold for functions where k∗(·)
is even.

For example, consider h(x) = x2, which has k∗(h) = 2.

The Taylor approximation is given by h(δ) ≈ δ2∆(h(x)) =
2δ2 = δ2∆(h(−x)) ≈ h(−δ), which does not give different

signs to different directions of x. Therefore, the two constraints

on ∆(f̂) defined in the corollaries that follow can be viewed
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as a single constraint on ∆(f̂) plus the constraint that k∗(f̂)
is odd.

A. Necessary Conditions

The necessary conditions derived are direct applications of

the estimated Pareto frontier’s definition and establish the basic

ground on how to define a function f from a given estimated

frontier.

Lemma 1 (General Necessity). Let F be an estimated Pareto

frontier. Let f(y) : RM → R be a score function for F . Then

f(y+ δu) > 0 and f(y− δu) < 0 for all y ∈ F , u ∈ (0, 1]M ,

and δ ∈ R, δ > 0.

Proof. Assume there are y, u, and δ > 0 such that f(y+δu) ≤
0. Let y′ = y + δu, so that y ≺ y′.

If f(y′) < 0, then from the definition of a score function

there is some y∗ ∈ F such that y′ ≺ y∗. From the transitivity

of dominance, we have that y ≺ y′ ≺ y∗, which is a

contradiction, since the point y∗ in the frontier cannot strongly

dominate the point y also in the frontier. Then we must

have f(y′) = 0, which means y′ ∈ F and also creates a

contradiction.

Assume that f(y− δu) ≥ 0, and let y′′ = y− δu. Then we

can similarly prove that it also creates a contradiction.

Therefore, there are no such y, u, and δ with f(y+δu) ≤ 0
or f(y − δu) ≥ 0. �

This result is intuitive, since moving δ in direction u from

y we enter either D or D. If the function has the required

derivatives, then the following result holds.

Corollary 1 (Differentiable Necessity). Let F be an estimated

Pareto frontier. Let f(y) : RM → R be a score function for

F . Let f̂+
y,u(x) = f(y + xu) and f̂−

y,u(x) = f(y − xu), with

x ∈ [0,∞). Let ∆(f̂+
y,u) and ∆(f̂−

y,u) be defined for all y ∈ F

and u ∈ (0, 1]M . Then ∆(f̂+
y,u) > 0 and ∆(f̂−

y,u) < 0 for all

y ∈ F and u ∈ (0, 1]M .

Proof. Since f satisfies all conditions from Lemma 1, we have

that f(y+ δu) > 0 and f(y− δu) < 0 for all y, u, and δ > 0.

In particular, let δ ≪ 1. Approximating using Taylor series,

we have that f(y + δu) ≈ f(y) + δ′∆(f̂+
y,u) > 0 and f(y −

δu) ≈ f(y) + δ′∆(f̂−
y,u) < 0, where δ′ is the appropriate

power of δ for the expansion. Since f(y) = 0 and δ′ > 0,

then ∆(f̂+
y,u) > 0 and ∆(f̂−

y,u) < 0 must hold. �

Although this corollary may appear to provide weaker guar-

antees on f , its proof shows that the inequality constraints on

the generalized gradient is equivalent to the direct inequalities

on the function defined in the previous lemma.

B. Sufficient Conditions

Once defined how the estimated Pareto frontier relates to a

given score function, we will show that a function that satisfies

the results of the previous lemma and corollary in fact uniquely

defines an estimated Pareto frontier F .

Lemma 2 (General Sufficiency). Let f(y) : RM → R be a

function. Let F = {y ∈ RM | f(y) = 0} be a path-connected

set. Let f(y + δu) > 0 and f(y − δu) < 0 for all y ∈ F ,

u ∈ (0, 1]M , and δ ∈ R, δ > 0. Then F is an estimated Pareto

frontier.

Proof. For F to be an estimated Pareto frontier, we have to

prove that for any y, y′ ∈ F, y 6= y′ we have y ⊀ y′. Assume

there are y and y′ in F such that y ≺ y′.

Let u = y′ − y and δ = 1. Then we have f(y + δu) =
f(y′) = 0, which violates the first inequality on f(·). Alter-

natively, we have f(y′ − δu) = f(y) = 0, which violates the

second inequality.

Therefore, there are no y and y′ in F such that y ≺ y′, and

F is an estimated Pareto frontier. �

The restrictions on f(y ± δu) may be hard to verify in

general, since they must be valid for all δ. However, if the

function has the appropriate derivatives, then it becomes easier

to check if it satisfies the requirements.

Corollary 2 (Differentiable Sufficiency). Let f(y) : RM → R
be a function. Let F = {y ∈ RM | f(y) = 0} be a path-

connected set. Let f̂+
y,u(x) = f(y+ xu) and f̂−

y,u(x) = f(y−

xu), with x ∈ [0,∞). Let ∆(f̂+
y,u) > 0 and ∆(f̂−

y,u) < 0 for

all y ∈ F and u ∈ (0, 1]M . Then F is an estimated Pareto

frontier.

Proof. To use Lemma 2, we must prove that f(y+δu) > 0 and

f(y − δu) < 0 for all y ∈ F , u ∈ (0, 1]M , and δ ∈ R, δ > 0.

Suppose there is some y, u, and δ in the domain such that

f(y + δu) = 0. Moreover, let δ be the smallest value for

which this happens for a given y and u. Let 0 < ǫ ≪ 1
and ǫ < δ. Then f(y + ǫu) ≈ f(y) + ǫ′∆(f̂+

y,u) > 0 and

f((y+δu)−ǫu) ≈ f(y+δu)+ǫ′∆(f̂−
y,u) < 0, where ǫ′ is the

appropriate power of ǫ for the approximation. However, f(·)
cannot go from positive to negative without passing through

0 due to its continuity. Then there must be some δ′ < δ such

that f(y + δ′u) = 0, which contradicts the definition of δ.

Therefore, the first inequality on Lemma 2 holds. We can

use a similar method to prove the second inequality, and then

use the lemma. �

Again, this corollary shows the equivalence between the

inequalities on the function and on the generalized gradient.

C. Necessary and Sufficient Conditions

Since the symmetry between Lemmas 1 and 2 is clear,

we can build a theorem to merge those two and provide

necessary and sufficient conditions for defining an estimated

Pareto frontier F from a score function f(y).

Theorem 1 (General Score Function). Let f(y) : RM → R
be a function. Let F = {y ∈ RM | f(y) = 0} be a path-

connected set. Let D = {y ∈ RM | ∃y′ ∈ F : y′ ≺ y} and

D = RM\(F ∪ D). Let f(y) > 0, ∀y ∈ D, and f(y) <

0, ∀y ∈ D. Then F is an estimated Pareto frontier if and only

if f(y+δu) > 0 and f(y−δu) < 0 for all y ∈ F , u ∈ (0, 1]M ,

and δ ∈ R, δ > 0.

Proof. Assume that the constraints on f are valid. Then, from

Lemma 2, we have that F is an estimated Pareto frontier.
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Now assume that F is an estimated Pareto frontier. Then, from

Lemma 1, we have that the constraints on f are valid. �

Instead of requiring knowledge of the sign of f(y) over the

sets, we can use a more strict definition, requiring continuity,

to guarantee that the result holds.

Corollary 3 (Continuous Score Function). Let f(y) : RM →
R be a continuous function where there are points v+ and

v− such that f(v+) > 0, f(v−) < 0, and v− ≺ v+. Let

F = {y ∈ RM | f(y) = 0} be a path-connected set. Then F

is an estimated Pareto frontier if and only if f(y+δu) > 0 and

f(y − δu) < 0 for all y ∈ F , u ∈ (0, 1]M , and δ ∈ R, δ > 0.

Proof. Assume that F is an estimated Pareto frontier. Assume

that there are y, y′ ∈ D = {y ∈ RM | ∃y′ ∈ F : y′ ≺ y} such

that f(y) > 0 and f(y′) < 0. From the continuity of f , we

have that there is some z ∈ D such that f(z) = 0. However,

since f(z) = 0, it is in F . From the definition of D, there is

some z′ ∈ F such that z′ ≺ z, which violates the assumption

that F is an estimated Pareto frontier. Therefore, all points in

D have the same sign over f . The same can be shown for D.

Since v− ≺ v+, we have that v+ ∈ D and v− ∈ D. Then

f satisfies all conditions from Theorem 1. �

Again, we can replace the constraints on f(y ± δu) by the

constraint on the generalized gradient.

Corollary 4 (Differentiable Score Function). Let

f(y) : RM → R be a function where there are points

v+ and v− such that f(v+) > 0, f(v−) < 0, and v− ≺ v+.

Let F = {y ∈ RM | f(y) = 0} be a path-connected set. Let

f̂+
y,u(x) = f(y + xu) and f̂−

y,u(x) = f(y − xu). Let ∆(f̂+
y,u)

and ∆(f̂−
y,u) be defined for all y ∈ F and u ∈ (0, 1]M . Then

F is an estimated Pareto frontier if and only if ∆(f̂+
y,u) > 0

and ∆(f̂−
y,u) < 0 for all y ∈ F and u ∈ (0, 1]M .

Proof. We can use Corollary 3 to show that the restrictions on

f(y± δu) must hold. From Corollaries 1 and 2, we know that

the restrictions on ∆(f̂±
y,u) are the same as the restrictions on

f(y ± δu), so this corollary is valid. �

V. LEARNING SURROGATE FUNCTIONS FROM SAMPLES

After showing what conditions the function f must satisfy,

one could ask how to build such function for a given problem

and specially how to learn one from a given set of non-

dominated points. This can be a hard question to answer in

general, but we can provide an additional lemma that can help

in many cases.

Lemma 3 (Strictly Increasing Sufficiency). Let f(y) : RM →
R be a strictly increasing function on each coordinate. Let

F = {y ∈ RM | f(y) = 0}. Then F is an estimated Pareto

frontier.

Proof. For F to be an estimated Pareto frontier, we have to

prove that for any y, y′ ∈ F, y 6= y′ we have y ⊀ y′. Assume

there are y and y′ in F such that y ≺ y′.

Let P = (p0 = y, p1, . . . , pM−1, pM = y′) be a path

between y and y′ that increments only one coordinate at a time.

Since f is strictly increasing, we have that f(pi) < f(pi+1).

Thus f(y) < f(y′), which contradicts the premise that

f(y) = f(y′) = 0 because they are both in the frontier.

Therefore, there are no y and y′ in F where y ≺ y′ and F

is an estimated Pareto frontier. �

Note that, because f is strictly increasing, there is no point

in F that even dominates another point in F , which was

allowed in Definition 3. This restriction can be relaxed to

be only monotonically non-decreasing if one can guarantee

that f(y) = 0 is only a manifold, and not a subspace with

volume. If f(y) = 0 is a subspace, then we can find two

points in it where one dominates the other, which violates the

basic definition of an estimated Pareto frontier. For instance, a

function that is monotonically non-decreasing and is constant

in at most one dimension at a time does not create a subspace

on f(y) = 0.

Nonetheless, this lemma can be used as a guide on how to

build a function for the general case. We will build a model

that tries to approximate an estimated Pareto frontier from

a few of its samples using an approximated monotonically

increasing function based on Gaussian processes.

A. Gaussian Process As a Function Approximation Problem

Since the model should have enough flexibility to fit the

given samples, an appropriate choice for a surrogate function

is a Gaussian process, which always has enough capacity to fit

the data. Before describing how a Gaussian process is used to

approximate the Pareto frontier, we provide the reader with an

overview of how they work. For a more detailed description,

we refer the reader to [15].

A Gaussian process (GP) is a generalization of the multi-

variate normal distribution to infinite dimensions and can be

used to solve a regression problem. A GP defines a probability

distribution over functions, such that the outputs are jointly

normally distributed.

To better understand this concept, consider an infinite col-

umn vector y ∈ R∞ and an infinite matrix x ∈ R∞×D. Then

a function f : RD → R can be described by associating the

row indexes, such that f(xi) = yi. The GP relies on the fact

that the relationship between x and y can be written as:

y ∼ N (µ(x),K(x)), (1)

which states that all dimensions of y are distributed according

to a multivariate normal distribution with mean µ(x) and

covariance K(x). Moreover, the mean for a given dimension

is given by E[yi] = µ(xi) and the covariance is given by

Cov(yi, yj) = k(xi, xj), where k(·, ·) is a positive semi-

definite kernel function.

Although continuous functions, and thus Gaussian pro-

cesses, are defined for an infinite number of points, which

caused the vectors x and y to have infinite dimensions, only

a finite number of observations are actually made in practice.

Let N be such number of observations. Then, by the marginal-

ization property of the multivariate normal distribution, we

only have to consider N observed dimensions of x and y.

Furthermore, the finite-dimension version of y is still normally

distributed according to Eq. (1) when considering only the

observed dimensions.
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Figure 2: Function distribution using a Gaussian process. Before the observations, the distribution is the same over all the

space. After the observations, the distribution adapts to constrain the possible functions. The distribution mean is given by the

black line and the 95% confidence interval is given by the shadowed region. Three function samples are also provided for

each case.

Usual choices for the mean and covariance functions are

the null mean [15], such that µ(x) = 0, and the squared

exponential kernel, defined by:

k(x, x′) = η2 exp

(

−
1

2

D
∑

i=1

(xi − x′
i)

2

ρ2i

)

, (2)

where η, ρi > 0 and ρi are the scale parameters, which define

a representative scale for the smoothness of the function.

The choice of the kernel function establishes the shape

and smoothness of the functions defined by the GP, with the

squared exponential kernel defining infinitely differentiable

functions. Other choices of kernel are possible and provide

different compromises regarding the shape of the function

being approximated, such as faster changes and periodicity of

values. However, in order to use the monotonicity constraints

introduced in Section V-B, the kernel has to be at least twice

differentiable, which limits the kernels that can be used.

Figure 2a shows the prior distribution over functions using

the squared exponential kernel with η = 1, ρ = 0.5, D = 1,

and the zero mean. This highlights the fact that the GP defines

a distribution over functions, not a unique function. Three

sample functions from this GP are also shown in the same

figure. Note that the functions are not shown as continuous,

which would require an infinite number of points, but as finite

approximations.

To use the GP to make predictions, the observed values of

x are split into a training set X , whose output Y is known,

and a test set X∗, whose output Y∗ we want to predict. Since

all observations are jointly normally distributed, we have that

the posterior distribution is given by:

Y∗|X∗, X, Y ∼ N (µ∗,Σ∗) (3a)

µ∗ = K(X∗, X)K(X,X)−1Y (3b)

Σ∗ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗), (3c)

where K(·, ·) are matrices built by computing the kernel

function for each combination of the arguments values.

The posterior distribution for the previous GP, after four

observations marked as black dots, is shown in Fig. 2b. Note

that the uncertainty around the observed points is reduced

due to the observation themselves, and the mean function

passes over the points, as expected. Again, three functions

are sampled from the posterior, and all agree on the value the

function must assume over the observations.

In order to avoid some numerical issues and to consider

noisy observations, we can assume that the covariance has

a noise term. Assuming that yi = f(xi) + ǫi, where ǫi is

normally distributed with zero mean and variance σ2, then

the covariance of the observations is given by Cov(yi, yj) =
k(xi, xj) + σ2δij . The noiseless value li = f(xi) can then be

estimated by:

L∗|X∗, X, Y ∼ N (µ∗,Σ∗) (4a)

µ∗ = K(X∗, X)ΩY (4b)

Σ∗ = K(X∗, X∗)−K(X∗, X)ΩK(X,X∗) (4c)

Ω =
[

K(X,X) + σ2I
]−1

, (4d)

which is similar to Eq. (3), except for the added term in Ω
corresponding to the noise.

B. Gaussian Processes with Monotonicity Soft Constraint as

Surrogates

Just like in the previous section, we consider the null mean

function µ(x) = 0 and the squared exponential kernel defined

in Eq. (2). Since we are mapping from the objective space RM

to a value in R, according to Definition 8, the input values are

the objectives y and the outputs the scores z.
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Let Y ∈ RN×M be a set of N input points and Z ∈ RN

their desired targets for training. We define the latent variable

L between the two, such that

L|X ∼ N (0,K(Y, Y )),

where K(Y, Y )i,j = k(yi, yj). The latent variable then pro-

duces the observed values Z through

Z|L ∼ N (L, σ2I),

where I is the identity matrix.

This model is the same as the one described in Section V-A.

However, only the mean prediction will be used in this paper

to describe the estimated Pareto frontier. Moreover, we will

show how changing the allowed noise level σ affects the Pareto

frontier approximation.

Besides the observations of f(y) at the desired points,

the GP framework also accepts observations of its derivative,

since differentiation is a linear operator [29], [30], that is, the

derivative of a GP is also a Gaussian process. However, since

we do not know the desired value of the gradient, only that

it should be positive, from Corollary 4 and Lemma 3, forcing

an arbitrary value may lead to reduced performance.

Another option is to introduce a probability distribution

over the gradient in order to favor positive values, introducing

monotonicity information [31]. This new distribution can be

viewed as adding constraints to the Gaussian process, making

it feasible to include the monotonicity information to the

existing framework.

Ideally, the probability distribution over the gradient is the

step function, which provides a probability of zero if the

gradient is negative and the same probability for all positive

gradients. However, the step function defines a hard threshold

and does not allow small errors, which can cause some

problems for the optimization. Therefore, a smooth function

that approximates the step is used to define a soft constraint

over the gradient.

Let m
(i)
di

be the indication that the i-th sample is monotonic

in the direction di. Then the following probability distribution

can be used to approximate the step function:

p

(

m
(i)
di

∣

∣

∣

∣

∂l(i)

∂ydi

)

= Φ

(

∂l(i)

∂ydi

1

ν

)

(5a)

Φ(v) =

∫ v

−∞

N (t|0, 1)dt, (5b)

where we assume the probit function Φ(·) as the derivative

probability. Since the probit is a cumulative distribution func-

tion, its value ranges from 0 to 1 and it is monotonically

increasing, which makes it a good approximation for the step

function. The parameter ν allows us to define how strict the

distribution should be, with ν → 0 approximating the step

function or a hard constraint. In this paper, following the

suggestion of [31], we use ν = 10−6.

Since the monotonicity probability is not normal, it has

to be approximated by a normal distribution to be used in

the GP framework. To understand this, first consider the

problem without the monotonicity constraints, which is given

by Eq. (4). The probability distribution of the observation is

given by:

p(L∗|X∗, X, Y ) =

∫

p(L∗|X∗, X, L)p(L|X,Y )dL, (6)

where L is the latent variable for the training data, whose

probability distribution, computed by the Bayes’ rule, is

p(L|X,Y ) =
p(Y |L)p(L|X)

p(Y |X)

p(Y |X) =

∫

p(Y |L)p(L|X)dL.

According to the model, the prior p(L|X) and the likelihoods

p(Y |L) and p(L∗|X∗, X, L) are normal distributions, which

makes all integrals tractable and all other distributions defined

in the closed form presented in Eq. 4.

Now, considering the monotonicity constraints, let M be

the monotonicity constraints and L′ be the random variable

associated with the derivative of the latent variables L. Then

the probability distribution in Eq. (5) can be written as

p(M|L′). Rewriting the posterior distribution over the latent

variables, we get:

p(L|X,Y,M) =
p(M|L′)p(Y |L)p(L,L′|X)

p(Y,M|X)
(7a)

p(Y,M|X) =

∫

p(M|L′)p(Y |L)p(L,L′|X)dLdL′. (7b)

Because the distribution p(M|L′) is not normal and every

other distribution in Eq. (7) is normal, the integrals defined in

Eqs. (6) and (7b) are intractable. Therefore, the distribution

p(M|L′) must be approximated by a normal distribution,

which can be achieved using the expectation propagation al-

gorithm [32], with the update equations described in [31]. The

expectation propagation algorithm iteratively adjusts an unnor-

malized normal distribution to locally approximate the distri-

bution defined by the soft constraints, such that p(M|L′) ≈
Z̃N (L′|µ̃, Σ̃), where Z̃ is a normalization constant, µ̃ is a

mean vector with one value for each monotonicity constraint,

and Σ̃ is a diagonal covariance matrix.

Besides this monotonicity constraint, we also would like

that the errors between the provided values for the points z

and their latent values l are small, so that the estimated shape

of the Pareto frontier is closer to the true one. This can be

achieved by placing a prior inverse-gamma distribution over

σ2, whose density is given by:

p(x;α, β) =
βα

Γ(α)
x−α−1 exp

(

−
β

x

)

,

where Γ(·) is the gamma function. As β → ∞, this prior is

ignored, while β → 0 indicates that there is no noise. In the

results shown, we fix α = 3 and vary β.

We define f(y) as the final expected value E[l∗|y∗, Z, Y, θ],
and the parameters θ are optimized to maximize the full

likelihood, including gradient probability and σ2 prior, of the

training data Y and Z . We also add the monotonicity constraint

on all training data for all directions, but it should be noted

that we can also add only monotonicity constraint at a point

without defining its desired value. This allows us to find points
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Figure 3: Contours for the f(y) learned using a Gaussian process with derivative constraint. The black dots are the frontier

points provided.
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(b) Convex, β = 0.1

Figure 4: Contours for the f(y) learned using standard Gaussian process. The black dots are the frontier points provided.

that have f(y) = 0 but negative gradient and add the constraint

on them, which in turn could improve the estimation.

To test the GP’s performance as a surrogate, we con-

sider the two test frontiers whose samples are given by

P1 = [(0, 1), (ǫ, ǫ), (1, 0)], which is a convex frontier, and

P2 = [(0, 1), (1− ǫ, 1− ǫ), (1, 0)], which is a concave frontier,

both with ǫ = 10−3. Note that the points were purposely

selected to test the ability to model very sharp frontiers.

However, using only the points defined by P1 and P2 leads to

a solution where f(y) is almost 0 everywhere. To avoid this

problem, we add a point (1, 1), with target value 1, to P1 and

a point (0, 0), with target value −1, to P2. The parameters for

the Gaussian process are found using gradient ascent in the

samples likelihood.

Figure 3 shows the resulting curves for different values of

β. The first thing we notice is that, although β → ∞ does not

place any restriction on σ, which allows the observed points

in the frontier to be far from their latent values that actually

define the frontier, the resulting curve is still able to fit the

general shape defined by the points provided.

As we reduce the value of β, the observed variance σ2 is

required to be smaller and the frontier shape gets better and

better. Ideally, with β = 0, the latent points would be the same

as the observed points, but this causes numeric problems due

to the monotonicity information and can make it harder to

satisfy the monotonicity constraint, due to the smoothness of

the GP.

When we reduce the value to β = 0.01 and beyond,

the resulting frontier is not valid anymore, with noticeable

points with negative derivative. However, the largest difference

in the concave problem is between points (0.82, 1.055) and

(0.2, 0.985), with a total reduction in y2 of just 0.07, and a

similar result is obtained for the convex case. Therefore, this

approximation is still close to the correct frontier and could be

used to evaluate proposed solutions because it was built with

the theoretical developments of this paper in mind and tries to

approximate them, which most likely provides better frontier

estimates than methods that use traditional regression solu-

tions, such as [10], [11], [13], where the manifold f(y) = 0

can have any shape.

To evaluate the effect of using the gradient constraint,

Fig. 4 shows a similar GP but without any information on the

gradients. Although the expected Pareto frontier is correctly

identified, there are also many points that do not belong to

the frontier and where f(y) = 0. Since the unconstrained GP

had better frontier estimates for the extreme points than the

constrained GP, as all points between them and the knee satisfy

the conditions, it appears that not every point benefits from the

gradient constraint.

Even though both GP models failed to fully satisfy the

theoretical conditions, we consider that the GP with derivative

restriction performed better, both because there are some

parameter sets that are able to satisfy the frontier conditions

and because it does not violate the restrictions as much.

Moreover, if the variance, which is not shown but is higher

for points far from the inputs provided, is taken into account,

then the violations of the GP with derivatives occur in a region

with higher uncertainty than the violations of the pure GP.

Therefore, despite the minor violations of the GP with

derivative constraints, this approximation is still close to the

correct frontier and could be used to evaluate the proposed

solutions.

C. Comparison to Existing SVM Surrogate

The surrogate method introduced in [10], like the method

proposed in this paper, is based on approximating the frontier

directly from values in the objective space. This makes it a

good candidate for comparison and validating the conjecture

that existing methods may arbitrarily violate the conditions

described in this paper.

The one-class SVM used in [10] is defined by the following

optimization problem:

min
w,ξi,ρ

‖w‖2

2
+

1

νN

N
∑

i=1

ξi − ρ

s.t. wTφ(xi) ≥ ρ− ξi

ξi ≥ 0, i ∈ {1, . . . , N},
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(d) γ = 8

Figure 5: Estimated frontiers using SVM with different values of γ and Gaussian process. The points in the data set that belong

to the true Pareto frontier are shown as dots.

where v ∈ (0, 1] and the feature-extraction function φ(x) is

defined implicitly by the kernel

K(x, y) = exp(−γ‖x− y‖2),

which is similar to the kernel used for the GP.

One important difference between training an SVM and

a GP is that the GP has a natural way to optimize its

hyper-parameters by maximizing the data likelihood, which

automatically defines a trade-off between fitting the data and

model complexity. For the SVM, we must use cross-validation

[33], which reduces the number of points available to fit the

model, since the data must be divided in the training and

validation sets.

To compare the surrogate methods, we use one test problem

from [3], which is also used in [10] to show the behavior of

the proposed SVM surrogate. The problem is given by:

min f1(x1, x2) = x1

min f2(x1, x2) = 1 + x2
2 − x1 − 0.2 sin(3πx1)

s.t. x1 ∈ [0, 1], x2 ∈ [−2, 2].

We chose this problem because its true Pareto frontier is

discontinuous, which creates sharp changes in its associated

estimated Pareto frontier, just like in Fig. 1, and makes it

harder to approximate.

We chose ν = 10−3 so that the samples provided should

be almost perfectly classified and we constrain the scales ρi
in Eq. 2 to be equal, so that both methods can use the same

features from the samples. The data set provided is composed

of a grid with step 0.05 for both variables, which includes

some points in the Pareto frontier. The full grid is used to fit

the SVM because it provided better results than using just the

non-dominated points, while only the non-dominated points

and one reference with target values 1 at (1.5, 1.5) are required

for the GP.

Figure 5 shows the resulting approximations of the Pareto

frontier using a GP with parameters learnt through gradient

ascent in the data likelihood, like in Section V-B, and an SVM

with different values of γ. The GP learns an appropriate shape

from the samples provided despite the discontinuity in the

frontier, but also slightly violates the constraints during the gap

in f1 ∈ [0.3, 0.5]. Moreover, in the absence of any information

about the shape in the interval f1 ∈ (0.9, 1], because no point

was provided there, the GP extrapolates a valid shape for the

Pareto frontier.

The SVM is highly dependent on the parameter γ. When
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it is small, the shape learnt is very conservative and does

not follow the shape defined by the points in the frontier.

On the other hand, when it is large, the surrogate fits the

points in the frontier better but also may define a function that

violates greatly the conditions to be a valid Pareto frontier.

The best value for γ that does not violate the constraints

in the interval f1 ∈ [0, 0.9] is γ = 5. However, for this

value the GP provides a better approximation of the Pareto

frontier, as shown in Fig. 5b. Increasing γ provides a better

approximation, achieving a quality comparable to the GP, but

also creates regions that violate the conditions to be a valid

Pareto frontier more than the GP. Furthermore, γ = 6 defines

a region that the SVM believes is part of the Pareto frontier

but actually is very distant from it and inside the dominated

region, as shown in Fig. 5c.

Besides these issues, the SVM also does not extrapolate

well to the region f1 ∈ (0.9, 1]. Close inspection shows that

the dominated region defined by the SVM is finite, that is,

it is described by a region in the objective space that is

surrounded by an infinite region that the SVM believes is

not dominated. This behavior shows that the learnt model

carries no concept of the problem it is solving, which is to

approximate a Pareto frontier, but describes a generic function

approximation. The results in Fig. 5 provide evidence for the

conjecture that existing methods proposed in the literature may

arbitrarily violate the conditions described in this paper.

Furthermore, if only the points at the Pareto frontier were

provided for learning, then the region defined by the SVM

would enclose only these points and would ignore the dom-

inated region. Thus the SVM method requires data in the

dominated region while the GP method only requires the

points at the frontier.

VI. CONCLUSION

In this paper, we have introduced the necessary and suf-

ficient conditions that functions must satisfy so that their

solution space describes an estimated Pareto frontier. These

conditions follow from the definition of an estimated Pareto

frontier and are extended for differentiable functions, which

allows easier verification of the conditions.

Based on these conditions, a Gaussian process (GP) was

tested on toy problems with very sharp Pareto frontiers. The

GP was extended to include the theoretical conditions as soft

probabilistic constraints and a regularization term was added

to avoid large deviations between the points and their latent

values. The mean latent value is used as surrogate for the

Pareto frontier, and some values of the regularization constant

allowed a correct frontier estimate to be found.

However, when the regularization becomes too strong, the

surrogate violates the constraints that define a valid estimated

Pareto frontier on some points, but this occurs far from the

given inputs and the deviation is small. This suggests that, even

under these conditions, the proposed function could be used

to provide insight on the shape of the true Pareto frontier, and

possibly provide more realistic estimates than other methods

that do not take the restrictions into consideration during their

design.

To validate this hypothesis and the conjecture that existing

surrogate methods may violate the conditions described in this

paper, we compared the proposed GP with a one-class SVM

used in [10] on one of the test problems described in the same

paper. We showed that the GP again violates the constraints

by small values and provides a good estimate for the Pareto

frontier, while the SVM defined a worse estimate or violated

the conditions more than the GP. Furthermore, the dominated

region defined by the SVM is bounded by what it represents

as the non-dominated region, while the GP correctly divides

the space in two infinite areas.

Besides being a better surrogate for the Pareto frontier, the

GP has the data likelihood as an innate measure that can

be used to optimize its hyper-parameters and only requires

data at the frontier. On the other hand, the SVM must use

some method, like cross-validation [33], to optimize its hyper-

parameters and it requires data in the dominated region to

define better approximations.

We highlight that, although GP were used together with the

theory on this paper to approximate the Pareto frontier, the

theory is general and does not depend on the specific choice

of the function descriptor. Therefore, other models that are

able to deal with the constraints imposed by the theory, in

either a soft or hard way, should be able to learn the desired

shape of the Pareto frontier too. Nonetheless, we are not aware

of any other method to create the score function in which the

constraints are as easy to include as in the GP. Additionally,

a GP provides robustness to changing the number of points

used in the estimation.

Further investigations involve studying the behavior of the

GP to approximate the Pareto frontier with real benchmarks

and using some multi-objective optimization algorithm, such

as NSGA-II [34], to provide the points. Since the objectives

tend to be smoother than in the example frontier provided [35],

we expect the estimated Pareto frontier described by a GP to

fit the true Pareto frontier even better in these problems. If this

is the case, we will investigate the possibility of integrating

the frontier surrogate with other surrogate models for the

objectives, so that all of them are learned directly and the

number of function evaluations could be reduced.

Moreover, since the only requirement for the surrogate is

that the Pareto frontier is approximated by the null space

and the exact value on other parts of the objective space are

not relevant, the GP could be used to fit a regression model

on the individuals of a population where the target value

is monotonically increasing in the objective space. Standard

performance measures in multi-objective optimization, such

as the class in non-dominated sorting [34] and the dominance

count [23], satisfy this property and can be used as targets of

the regression. In this case, the GP would not only define the

Pareto frontier, but would also define a measure of the distance

between a given point and the approximated Pareto frontier.

Another interesting line of research is to evaluate when the

derivative constraints on the points provided is beneficial, since

in some points it avoids incorrect association of other points

with the frontier, like around the knee in the unconstrained

GP shown in this paper, and in others it may make the

estimated shape not satisfy the constraints, like the points in
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the constrained GP also shown in this paper. This could not

only provide better fit, but may also increase the fitting speed,

since less constraints need to be evaluated, which reduces the

size of the GP and the number of expectation propagation

steps required. Therefore an iterative algorithm that adds the

constraints as needed should be pursued.
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