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Statistics and Machine Learning

Part 1: Theory and Regression Problems

Conrado Miranda
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Conclusion

Introduction

Introduction

Why statistics?

m Everything needs a model and statistics provide a framework
to deal with data.

m Most machine learning algorithms are based on statistics
and graph theory.

Focus of the presentation

m Understanding statistics properties;

m Building and expanding models;
m Solving regression, classification, and clustering problems.
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Random Variable: Definition

A random variable (rv) X: Q — E is a measurable function from
the set of possible outcomes Q to some set E.

Example: coin toss bet
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Random Variable: Definition

Function of random variable

Let f(X): Ex — Ey, then a new random variable Y may be

defined as:
Y=f(X)=foX, Y:Q-E 2)

Realization

A realization of a rv X is the value x that is actually observed when
the variable is measured, and it's denoted as:

x~ X (3)
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Random Variable: Discrete and Continuous Distributions

A discrete probability distribution D: o(2) — [0, 1] is described by
its probability mass function (pmf) p(X = x), such that:

Zp(X:X):]., p(X=x)>0 (4)

Continuous

A continuous probability distribution D: o(2) — [0, 1] is described
by its probability density function (pdf) px(x), such that:

/Q px(x)dx =1, px(x) >0 (5)

CEX
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Random Variable: Expectation

The expectation operator is the average of values a function
achieves for each event, pondered by the probability of the event:

Evex[fF()] = 3 F(x)p(X = x) (6a)
xEN
E,ox[F(x)] = /Q b (6b)
st
JBi
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Random Variable: Expectation (applications)

Mean

px = Bl = 32 x p(X = %) 1)
xEN

0% = Exox[(x — 1x)?] (8)

Entropy

Hx = Eyxx[— log x] (9) B¢
S
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Random Variable: Example

Problem

Let p the probability of a coin toss providing heads H, and 1 — p
the probability of tails T. Let X be a bet that pays 1 if the coin
lands on H, and charges —1 if it lands on T. Determine the
expected pay-off.

Random variables definition

Coin toss distribution: p(H) = p, p(T) =1 — p.
Pay function: f(H) =1, f(T) = —1.

Expected pay-off

V=Ecclf()l= > flo)p(c)=p—(1-p)=2p—1 (10) ==
ce{H,T} R
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Main Distributions: Categorical

If a realization of the random variable X has to one of k values,
then its distribution D is the categorical distribution. If p; is the
probability of obtaining the i-th value, then

p(X = xi:{pi}) = p(X; {pi}) = HP, : Zpl—l pi >0 (11)

where X = [Xq, Xo, ..., Xik] and X; = 1[X = xj].

SENES

Coin flip, dice roll, roulette, card games.
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Main Distributions: Dirichlet
ST ={0eRY9; >0,) 0; =1} (12)
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Main Distributions: Normal and Laplace

Normal distribution

p(x; p,0) =
g

Laplace distribution

12 5@ <—M> (13)

m 20'2

oo (-2 (14)
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Main Distributions: same variance

Laplace
normal

. R
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Main Distributions: same maximum
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Distribution Properties: Multiple Variables

m Joint and marginal distributions

p(x1, X2, y1,¥2) = p(x1,x2ly1,y2) p(yily2)p(y2) (15)

joint distribution marginal distribution
m Marginalization
p(x) =>_p(x,y) (16)
y
m If X is independent of Z given Y, then
p(xly,z) = p(x|y) (17)
m Bayes' Theorem
p(y|x, z)p(x|2) p(x|6)p(6) FE
plxly,z) = PYP2PZ) gy PUOIPO) gy
. (1) ) OB
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Distribution Properties: Sufficient Statistics

Statistic

A statistic is the application of a function to a sample set.
Example: sample mean.

2 |

N
Z (19)
i=1

Definition

A statistics T(x) is sufficient for the underlying parameter 6 if

p(X =x|T(x) = t,0) = p(X = x| T(x) = t) < p(0]t, x) = p(0|t)
(20) ﬁc
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Distribution Properties: Factorization

X T(x) 0

Fisher-Neyman factorization theorem

T(x) is a sufficient statistics iff

p(x|0) = h(x)g(0, T(x)) (21)

Exponential family

p(x|0) = h(x) exp(n(0) - T(x) — A(0)) (22)

CEX
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Distribution Properties: Central Limit Theorem

Lindeberg-Lévy Central Limit Theorem

Let X;, i = {1,...,n}, be independent and identically distributed
(iid) random variables with E[X;] = p and Var[X;] = 02 < oco.
Then, as n — oo,

Vi ((12x> —u) < N (0,0%) (23)

i=1
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Estimators: Maximum Likelihood Estimator (MLE)

Likelihood

Let {x;} be iid samples from a distribution with parameter §. The
likelihood of @ is defined by:

LOx1, .., X%n) = p(x1, ..., Xa|0) = Hp(x,-|9) (24)

n
OvLe = -
MLE = arg max Z log p(xi|0) (25)
i=1 ot
Bi
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Estimators: Maximum A Posteriori (MAP)

A Posteriori Probability

(0) ITiLy p(xil0)
p(x1, ..., Xn)

p(O]xt, ... xn) = 2 (26)

n
Ouap = arg maxlog p(0) + ) _ log p(xi|6) (27)
i=1

Relationship to MLE

p(0) = C = Bmap = Ouie (28) ]

(®)
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Estimators: KL-Divergence

KL-Divergence

KLlp()lla()] = | plx)log qg §dx (200)
= _Hp(x) - X~p(X)[|Og q(X)] (29b)

Empirical distribution
1 n
=— > 6(x = x) (30a)
i=1

Ernpe()llog p(X,0)] = % > " 8(x — xi) log p(x, 0) (30b)

i=1

1 =
== logp(xi,0) (30¢) Bi
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Loss Functions

myin Exx[L(x,y)] (31)

m Lg(x,y) = (x — y)? means predicting the mean of x.

m L, (x,y) = |x — y| means predicting the median of x.
B Liog(x,y) =log(1/p(z = x)),z ~ y, means minimizing the
description length of x.

m Lyi(x,y) = —y*(1—y)
of x happening.

(1=x) means predicting the probability

CEX
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Regression: Standard Linear

Mathematical description

B =arg min |1y - X8B3 (32)

Statistical description*

n
B = BuLe = arg m;xz log par(yi; xiB, 1) (33)
i=1
i)
_Bi
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Regression: Ridge Linear

Mathematical description

3=argmﬁinlly—Xﬂ\|§+/\II5H§ (34)

Statistical description*®

N N 1 n
B = Buap = arg T2 log par(5: 0.7 21) + > _ log p(yii xif, 1)
i=1
(35)

LBi
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Regression: Lasso Linear

Mathematical description

3=argmﬂinlly—Xﬁ\|§+/\llﬂHl (36)

Statistical description*®

B = PBuap =arg mﬁaX'Og pr(Bi0, N H )+ " log par(yii xiB, 1)
i=1
(37)

LBi
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Regression: Other Regressors

Generalization

Just replace x;5 with f(x;, 3), where f(-) is a general learner.

Example: matrix decomposition

Find V € R™k and U € R**™ to fit X € R™*™,

To approximate full X, a normal error is considered.

To avoid overfitting, assume each value of V and U comes
from a normal distribution.

Xij— Vi.U.j=E;~N(0,1),Vi; ~ N(0,1), U;; ~ N(0,1)

)
min [|X — VUII3 + VI3 + [ UII3 (38b)
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Example: regularized linear regression

Parameters

m # of variables: 20

m # of training samples: 100
m # of test samples: 100k

m Noise: NV(0,1)

m Features orthonormalized for easier solution
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Example: parameters

18112
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Example: number of parameters

20

18 7

16 7

14 B

12 7

# of non-zero parameters
5
L
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Example: noiseless test error

MSE

0.1 L L L L L L L L L \)i
0 05 1 15 2 2; 3 35 4 45 5 LBIC
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Conclusion

Statistics is very useful, but can be hard

m Can be used to propose new models;

m Lots of properties and relationships;

m Responsible for some (but not all!) important machine
learning improvements.

What to expect from part 2

m How to describe models visually to ease understanding;

m Examples of algorithms for problems of classification and
clustering.
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