
Statistics and Machine Learning

Part 1: Theory and Regression Problems

Conrado Miranda
LBiC, FEEC, University of Campinas



Introduction Statistics 101 Statistics 201 Regression Conclusion

Contents

1 Introduction

2 Statistics 101
Random Variables and Distributions
Main Distributions

3 Statistics 201
Distribution Properties
Estimators
Loss Functions

4 Regression
Regression Example

5 Conclusion

1 / 30



Introduction Statistics 101 Statistics 201 Regression Conclusion

Introduction

Why statistics?

Everything needs a model and statistics provide a framework
to deal with data.

Most machine learning algorithms are based on statistics

and graph theory.

Focus of the presentation

Understanding statistics properties;

Building and expanding models;

Solving regression, classification, and clustering problems.
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Random Variable: Definition

Definition

A random variable (rv) X : Ω → E is a measurable function from
the set of possible outcomes Ω to some set E .

Example: coin toss bet

X (ω) =

{

1, ω = H

−1, ω = T
(1)
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Random Variable: Definition

Function of random variable

Let f (X ) : EX → EY , then a new random variable Y may be
defined as:

Y = f (X ) = f ◦ X , Y : Ω → Ey (2)

Realization

A realization of a rv X is the value x that is actually observed when
the variable is measured, and it’s denoted as:

x ∼ X (3)
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Random Variable: Discrete and Continuous Distributions

Discrete

A discrete probability distribution D : σ(Ω) → [0, 1] is described by
its probability mass function (pmf) p(X = x), such that:

∑

x∈Ω

p(X = x) = 1, p(X = x) ≥ 0 (4)

Continuous

A continuous probability distribution D : σ(Ω) → [0, 1] is described
by its probability density function (pdf) pX (x), such that:

∫

Ω
pX (x)dx = 1, pX (x) ≥ 0 (5)
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Random Variable: Expectation

Definition

The expectation operator is the average of values a function
achieves for each event, pondered by the probability of the event:

Ex∼X [f (x)] =
∑

x∈Ω

f (x)p(X = x) (6a)

Ex∼X [f (x)] =

∫

Ω
f (x)pX (x)dx (6b)
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Random Variable: Expectation (applications)

Mean

µX = Ex∼X [x ] =
∑

x∈Ω

x p(X = x) (7)

Variance

σ2
X = Ex∼X [(x − µX )

2] (8)

Entropy

HX = Ex∼X [− log x ] (9)

7 / 30



Introduction Statistics 101 Statistics 201 Regression Conclusion

Random Variable: Example

Problem

Let p the probability of a coin toss providing heads H, and 1 − p

the probability of tails T . Let X be a bet that pays 1 if the coin
lands on H, and charges −1 if it lands on T . Determine the
expected pay-off.

Random variables definition

Coin toss distribution: p(H) = p, p(T ) = 1 − p.
Pay function: f (H) = 1, f (T ) = −1.

Expected pay-off

V = Ec∼C [f (c)] =
∑

c∈{H,T}

f (c)p(c) = p− (1− p) = 2p− 1 (10)
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Main Distributions: Categorical

If a realization of the random variable X has to one of k values,
then its distribution D is the categorical distribution. If pi is the
probability of obtaining the i -th value, then

p(X = xi ; {pi}) = p(X; {pi}) =
k∏

i=1

p
Xi

i ,
k∑

i=1

pi = 1, pi ≥ 0 (11)

where X = [X1,X2, . . . ,Xk ] and Xi = 1[X = xi ].

Examples

Coin flip, dice roll, roulette, card games.
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Main Distributions: Dirichlet

Sd−1 = {θ ∈ R
d |θi ≥ 0,

∑

i

θi = 1} (12)
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Main Distributions: Normal and Laplace

Normal distribution

p(x ;µ, σ) =
1

σ
√

2π
exp

(

−(x − µ)2

2σ2

)

(13)

Laplace distribution

p(x ;µ, b) =
1

2b
exp

(

−|x − µ|
b

)

(14)
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Main Distributions: same variance
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Main Distributions: same maximum
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Distribution Properties: Multiple Variables

Joint and marginal distributions

p(x1, x2, y1, y2)
︸ ︷︷ ︸

joint distribution

= p(x1, x2|y1, y2)
︸ ︷︷ ︸

marginal distribution

p(y1|y2)p(y2) (15)

Marginalization

p(x) =
∑

y

p(x , y) (16)

If X is independent of Z given Y , then

p(x |y , z) = p(x |y) (17)

Bayes’ Theorem

p(x |y , z) = p(y |x , z)p(x |z)
p(y |z) p(θ|x) = p(x |θ)p(θ)

p(x)
(18)
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Distribution Properties: Sufficient Statistics

Statistic

A statistic is the application of a function to a sample set.
Example: sample mean.

µ =
1

N

N∑

i=1

xi (19)

Definition

A statistics T (x) is sufficient for the underlying parameter θ if

p(X = x |T (x) = t, θ) = p(X = x |T (x) = t) ⇔ p(θ|t, x) = p(θ|t)
(20)
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Distribution Properties: Factorization

x T (x) θ

Fisher-Neyman factorization theorem

T (x) is a sufficient statistics iff

p(x |θ) = h(x)g(θ,T (x)) (21)

Exponential family

p(x |θ) = h(x) exp(η(θ) · T (x) − A(θ)) (22)
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Distribution Properties: Central Limit Theorem

Lindeberg-Lévy Central Limit Theorem

Let Xi , i = {1, . . . , n}, be independent and identically distributed
(iid) random variables with E[Xi ] = µ and Var [Xi ] = σ2 < ∞.
Then, as n → ∞,

√
n

((

1

n

n∑

i=1

Xi

)

− µ

)

d−→ N (0, σ2) (23)
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Estimators: Maximum Likelihood Estimator (MLE)

Likelihood

Let {xi} be iid samples from a distribution with parameter θ. The
likelihood of θ is defined by:

L(θ|x1, . . . , xn) = p(x1, . . . , xn|θ) =
n∏

i=1

p(xi |θ) (24)

Estimator

θ̂MLE = arg max
θ

n∑

i=1

log p(xi |θ) (25)
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Estimators: Maximum A Posteriori (MAP)

A Posteriori Probability

p(θ|x1, . . . , xn) =
p(θ)

∏n
i=1 p(xi |θ)

p(x1, . . . , xn)
(26)

Estimator

θ̂MAP = arg max
θ

log p(θ) +

n∑

i=1

log p(xi |θ) (27)

Relationship to MLE

p(θ) = C ⇒ θ̂MAP = θ̂MLE (28)
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Estimators: KL-Divergence

KL-Divergence

KL[p(x)||q(x)] =
∫

p(x) log
p(x)

q(x)
dx (29a)

= −Hp(x) − Ex∼p(x)[log q(x)] (29b)

Empirical distribution

ps(x) =
1

n

n∑

i=1

δ(x − xi) (30a)

Ex∼ps(x)[log p(X , θ)] =
1

n

n∑

i=1

δ(x − xi) log p(x , θ) (30b)

=
1

n

n∑

i=1

log p(xi , θ) (30c)
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Loss Functions

Objective

min
y

Ex∼X [L(x , y)] (31)

Common losses

Lsq(x , y) = (x − y)2 means predicting the mean of x .

Lav (x , y) = |x − y | means predicting the median of x .

Llog(x , y) = log(1/p(z = x)), z ∼ y , means minimizing the
description length of x .

Lbi (x , y) = −y x(1 − y)(1−x) means predicting the probability
of x happening.
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Regression: Standard Linear

Mathematical description

β̂ = arg min
β

‖y − Xβ‖2
2 (32)

Statistical description*

β̂ = β̂MLE = arg max
β

n∑

i=1

log pN (yi ; xiβ, I ) (33)

22 / 30



Introduction Statistics 101 Statistics 201 Regression Conclusion

Regression: Ridge Linear

Mathematical description

β̂ = arg min
β

‖y − Xβ‖2
2 + λ‖β‖2

2 (34)

Statistical description*

β̂ = β̂MAP = arg max
β

log pN (β; 0, λ− 1
2 I ) +

n∑

i=1

log pN (yi ; xiβ, I )

(35)
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Regression: Lasso Linear

Mathematical description

β̂ = arg min
β

‖y − Xβ‖2
2 + λ‖β‖1 (36)

Statistical description*

β̂ = β̂MAP = arg max
β

log pL(β; 0, λ
−1I ) +

n∑

i=1

log pN (yi ; xiβ, I )

(37)
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Regression: Other Regressors

Generalization

Just replace xiβ with f (xi , β), where f (·) is a general learner.

Example: matrix decomposition

Find V ∈ R
n×k and U ∈ R

k×m to fit X ∈ R
n×m.

1 To approximate full X , a normal error is considered.

2 To avoid overfitting, assume each value of V and U comes
from a normal distribution.

Xi ,j − Vi ,:U:,j = Ei ,j ∼ N (0, 1),Vi ,j ∼ N (0, 1),Ui ,j ∼ N (0, 1)
(38a)

min
V ,U

‖X − VU‖2
2 + ‖V ‖2

2 + ‖U‖2
2 (38b)
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Example: regularized linear regression

Parameters

# of variables: 20

# of training samples: 100

# of test samples: 100k

Noise: N (0, 1)

Features orthonormalized for easier solution
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Example: parameters
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Example: number of parameters
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Example: noiseless test error
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Conclusion

Statistics is very useful, but can be hard

Can be used to propose new models;

Lots of properties and relationships;

Responsible for some (but not all!) important machine
learning improvements.

What to expect from part 2

How to describe models visually to ease understanding;

Examples of algorithms for problems of classification and
clustering.
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